Thursday, May 18, 2017

"Difficult" and "Easy" Are Undefined

This post comes about because in an online forum, someone asked if it is "easier" to heat something than to cool it down. The issue for me here isn't the subject of the question, which is heating and cooling and object, but rather, that the person asking the question thinks that the "measure" here is the "easiness". I'm sure this person, and many others, didn't even think twice to realize that this is a rather vague and ambiguous question. After all, it is common to ask if something is easy or difficult. Yet, if you think about it carefully, this is really asking for something that is undefined.

First of all, the measure of something to be "easy" or "difficult" it itself is subjective. What is easy to some, can easily be difficult to others (see what I did there?). Meryl Streep can easily memorize pages and pages of dialog, something that I find difficult to do because I am awful at memorization. But yet, I'm sure I can solve many types of differential equations that she finds difficult. So already, there is a degree of "subjectiveness" to this.

But what is more important here is that, in science, for something to be considered as a valid description of something, it must be QUANTIFIABLE. In other words, a number associated with that description can be measured or obtained.

Let's apply this to an example. I can ask: How difficult or easy it is to stop a 100 kg moving mass? So, what am I actually asking here when I ask if it is "easy" or "difficult"? It is vague. However, I can specify that if I use less force to make the object come to a complete stop over a specific distance, then this is EASIER than if I have to use a larger force to do the same thing.

Now THAT is more well-defined, because I am using "easy" or "difficult" as a measure of the amount of force I have to apply. In fact, I can omit the use of the words "easy" and "difficult", and simply ask for the force needed to stop the object. That is a question that is well-defined and quantifiable, such that a quantitative comparison can be made.

Let's come back to the original question that was the impetus of this post. This person asked if it is easier to heat things rather than to cool things. So the question now is, what does it mean for it to be "easy" to heat or cool things. One measure can be that, for a constant heat transfer, how long in time does it take to heat or cool the object by the same change in temperature? So in this case, the measure of time taken to heat and cool the object by the same amount of temperature change is the measure of "easy" or "difficult". One can compare time taken to heat the object by, say, 5 Celsius, versus time taken to cool the object by the same temperature change. Now this, is a more well-defined question.

I bring this up because I often see many ordinary conversation, discussion, news reports, etc.. etc. in which statements and descriptions made appear to be clear and to make sense, when in reality, many of these are really empty statements that are ambiguous, and sometime meaningless. Describing something to be easy or difficult appears to be a "simple" and clear statement or description, but if you think about it carefully, it isn't! Ask yourself if the criteria to classify something to be easy, easier, difficult, more difficult, etc... etc. is plainly evident and universally agreed upon. Did the statement that says "such and such undermines so-and-so" is actually clear on what it is saying? What exactly does "undermines" mean in this case, and what is the measure of it?

Science/Physics education has the ability to impart this kind of analytical skills, and to impart this kind of thinking to the students, especially if they are not specializing in STEM subjects. In science, the nature of the question we ask can often be as important as the answers that we seek. This is because unless we clearly define what it is that we are asking, then we can't know where to look for the answers. This is a lesson that many people in the public need to learn and to be aware of, especially in deciphering many of the things we see in the media right now.

It is why science education is invaluable to everyone.


Thursday, May 11, 2017

Initial Employment Of US Physics Bachelors

The AIP has released the latest statistics on the initial employment of Physics Bachelors degree holders from the Class of 2013 and 2014.

Almost half of the degree holders left school to go into the workforce, with about 54% going on to graduate school. This is a significant percentage, and as educators, we need to make sure we prepare physics graduates for such a career path and not assume that they will all go on to graduate schools. This means that we design a program in which they have valuable and usable skills by the time they graduate.


Wednesday, May 10, 2017

Dad Sat In On Student's Physics Class

A dad finally had it with his son's disruptive behavior in a high school physics class, and finally made his threat came true. He sat next to his son during his physics class.

His dad explained that his son 'likes to be the life of the party, which gets him in trouble from time to time.'

'For some reason I said, "hey, if we get another call I'm going to show up in school and sit beside you in class,"' he said. 

Unfortunately for the 17-year-old, that call did come. 

The thing that these news reports didn't clarify is if this student does this in all of his classes. If so, why is the physics teacher the one one reporting? If not, why does this student only does this in his physics class?

Sometime, a lot of information is missing from a news report.


Wednesday, May 03, 2017

The US 2017 Omnibus Budget

Finally, the US Congress has a 2017 budget, and this is the time that I'm glad they didn't follow the disastrous budget proposal of Donald Trump. Both NSF and DOE Office of Science didn't fare badly, with NSF doing worse than I expected. Still, what a surprise to see an increase in funding for HEP after years of neglect and budget cuts.

The Office of Science supports six research programs, and there were winners and losers among them. On the plus side, advanced scientific computing research, which funds much of DOE's supercomputing capabilities, gets a 4.2% increase to $647 million. High energy physics gets a boost of 3.8% to $825 million. Basic energy sciences, which funds work in chemistry, material science, and condensed matter physics and runs most of DOE's large user facilities, gets a bump up of 1.2% to $1.872 billion. Nuclear physics gets a 0.8% raise to $622 million; biological and environmental research inches up 0.5% to $612 million. In contrast, the fusion energy sciences program sees its budget fall a whopping 13.2% to $380 million.

It will continue to be challenging for physics funding during the next foreseeable future, but at least this will not cause a major panic. I've been highly critical of the US Congress on many issues, but I will tip my hat to them this time for standing up to the ridiculous budget that came out of the Trump administration earlier.


Saturday, April 22, 2017

Earth Day 2017 - March For Science Day

Today is the March for Science day to coincide with Earth Day 2017.

Unfortunately, I will not be participating in it, because I'm flying off to start my vacation. However, I have the March for Science t-shirt, and will be wearing it all day. So I may not be with all of you who will be participating it in today, but I'll be there in spirit.

And yes, I have written to my elected officials in Washington DC to let them know how devastating the Trump budget proposal is to science and the economic future of this country. Unfortunately, I may be preaching to the choir, because all 3 of them (2 Senators and 1 Representative of my district) are all Democrats who I expect to oppose the Trump budget as it is anyway.

Anyhow, to those of you who will be marching, YOU GO, BOYS AND GIRLS!


Friday, April 21, 2017

"Physics For Poets" And "Poetry For Physicists"?

Chad Orzel has a very interesting and thought-provoking article that you should read.

What he is arguing is that scientists should learn the mindset of the arts and literature, while those in the humanities and the arts should learn the mindset of science. College courses should not be tailored in such a way that the mindset of the home department is lost, and that a course in math, let's say, has been devolved into something palatable to an arts major.

I especially like his summary at the end:

One of the few good reasons is that a mindset that embraces ambiguity is something useful for scientists to see and explore a bit. By the same token, though, the more rigorous and abstract scientific mindset is something that is equally worthy of being experienced and explored by the more literarily inclined. A world in which physics majors are more comfortable embracing divergent perspectives, and English majors are more comfortable with systematic problem solving would be a better world for everyone.

I think we need to differentiate between changing the mindset versus tailoring a course for a specific need. I've taught a physics class for mainly life science majors. The topics that we covered is almost identical to that offered to engineering/physics majors, with the exception that they do not contain any calculus. But other than that, it has the same rigor and coverage. The thing that made it specific to the group of students is that many of the examples that I used came out of biology and medicine. These were what I used to keep the students' interest, and to show them the relevance of what they were studying to their major area. But the systematic and analytical approach to the subject are still there. In fact, I consciously emphasized the technique and skills in analyzing and solving a problem, and made them as important as the material itself. In other words, this is the "mindset" that Chad Orzel was referring to that we should not lose when the subject is being taught to non-STEM majors.


Wednesday, April 19, 2017

The Mystery Of The Proton Spin

If you are not familiar with the issues surrounding the origin of the proton's spin quantum number, then this article might help.

It explains the reason why we don't believe that the proton spin is due just to the 3 quarks that make up the proton, and in the process, you get an idea how complicated things can be inside a proton.

There are three good reasons that these three components might not add up so simply.
  1. The quarks aren't free, but are bound together inside a small structure: the proton. Confining an object can shift its spin, and all three quarks are very much confined.
  2. There are gluons inside, and gluons spin, too. The gluon spin can effectively "screen" the quark spin over the span of the proton, reducing its effects.
  3. And finally, there are quantum effects that delocalize the quarks, preventing them from being in exactly one place like particles and requiring a more wave-like analysis. These effects can also reduce or alter the proton's overall spin.
Expect the same with a neutron.


Tuesday, April 18, 2017

Testing For The Unruh Effect

A new paper that is to appear in Phys. Rev. Lett. is already getting quite a bit of advanced publicity. In it, the authors proposed a rather simple way to test for the existence of the long-proposed Unruh effect.

Things get even weirder if one observer accelerates. Any observer traveling at a constant speed will measure the temperature of empty space as absolute zero. But an accelerated observer will find the vacuum hotter. At least that's what William Unruh, a theorist at the University British Columbia in Vancouver, Canada, argued in 1976. To a nonaccelerating observer, the vacuum is devoid of particles—so that if he holds a particle detector it will register no clicks. In contrast, Unruh argued, an accelerated observer will detect a fog of photons and other particles, as the number of quantum particles flitting about depends on an observer's motion. The greater the acceleration, the higher the temperature of that fog or "bath."

So obviously, this is a very difficult effect to detect, which explains why we haven't had any evidence for it since it was first proposed in 1976. That is why this new paper is causing heads to turn, because the authors are proposing a test using our existing technology. You may read the two links above to see what they are proposing using our current particle accelerators.

But what is a bit amusing is that there are already skeptics about this methodology of testing, but each camp is arguing it for different reasons.

Skeptics say the experiment won’t work, but they disagree on why. If the situation isproperly analyzed, there is no fog of photons in the accelerated frame, says Detlev Buchholz, a theorist at the University of Göttingen in Germany. "The Unruh gas does not exist!" he says. Nevertheless, Buchholz says, the vacuum will appear hot to an accelerated observer, but because of a kind of friction that arises through the interplay of quantum uncertainty and acceleration. So,the experiment might show the desired effect, but that wouldn't reveal the supposed fog of photons in the accelerating frame.

In contrast, Robert O'Connell, a theorist at Louisiana State University in Baton Rouge, insists that in the accelerated frame there is a fog of photons. However, he contends, it is not possible to draw energy out of that fog to produce extra radiation in the lab frame. O'Connell cites a basic bit of physics called the fluctuation-dissipation theorem, which states that a particle interacting with a heat bath will pump as much energy into the bath as it pulls out. Thus, he argues, Unruh's fog of photons exists, but the experiment should not produce the supposed signal anyway.

If there's one thing that experimenters like, it is to prove theorists wrong! :) So which ever way an experiment on this turns out, it will bound to disprove one group of theorists or another. It's a win-win situation! :)


Monday, April 17, 2017

Hot Atoms Interferometer

This work will not catch media attention because it isn't "sexy", but damn, it is astonishing nevertheless.

Quantum behavior are clearly seen at the macroscopic level because of the problem in maintaining coherence over a substantial length and time scales. One of the ways one can extend such scales is by cooling things down to extremely low temperatures so that decoherence due to thermal scattering is minimized.

So it is with great interest that I read this new paper on atoms interferometer that has been accomplished with "warm" atomic vapor[1]! You also have access to the actual paper from that link.

While the sensitivity of this technique is significantly and unsurprisingly low when compared to cold atoms, it has 2 major advantages:

However, sensitivity is not the only parameter of relevance for applications, and the new scheme offers two important advantages over cold schemes. The first is that it can acquire data at a rate of 10 kHz, in contrast to the typical 1-Hz rate of cold-atom LPAIs. The second advantage is the broader range of accelerations that can be measured with the same setup. This vapor-cell sensor remains operational over an acceleration range of 88g, several times larger than the typical range of cold LPAIs.

The large bandwidth and dynamic range of the instrument built by Biedermann and co-workers may enable applications like inertial navigation in highly vibrating environments, such as spacecraft or airplanes. What’s more, the new scheme, like all LPAIs, has an important advantage over devices like laser or electromechanical gyroscopes: it delivers acceleration measurements that are absolute, without requiring a reference signal. This opens new possibilities for drift-free inertial navigation devices that work even when signals provided by global satellite positioning systems are not available, such as in underwater navigation.

And again, let me highlight the direct and clear application of something that started out as simply appearing to be a purely academic and knowledge-driven curiosity. This really is an application of the principle of superposition in quantum mechanics, i.e. the Schrodinger Cat.

This is an amazing experimental accomplishment.


[1] G. W. Biedermann et al., Phys. Rev. Lett. 118, 163601 (2017).

Sunday, April 16, 2017

Why Is The Weak Force Weak?

Fermilab's Don Lincoln has another fun and informative video on our elementary particles and interactions.


Saturday, April 15, 2017

To Draw Or Not To Draw?

OK, this is a rather lengthy paper, and I thought I would have gotten through it by now, but I just don't have the time. So instead, I'm just going to mention it here and let you people read for yourself.

This paper seems to argue that in cases of supporting diagram that accompanies a physics question (not diagram that actually is essential to the question), this diagram can often be useless, or even a hindrance to the students' ability to solve the problem.

This isn't the same as the student having to draw a diagram in solving a problem. That is not the subject of the paper here. I'm still trying to understand what is actually categorized as "supporting diagram" that accompanies a physics question. Maybe once I have a hang of that, the rest of the paper might be more relevant.

Still, if you're bored, you might have a go at it first ahead of me.